Abstract

The operation of the photovoltaic (PV) system under partial shading conditions (PSC) is complicated since the output characteristic of the PV system is profoundly affected by the heterogeneous irradiance of PSC. This paper proposes a dynamic reconfiguration framework to tackle PSC in the PV array. Continuous operation of the dynamic PV array reconfiguration under cloud-induced partial shading is considered by developing an emulator of the moving cloud. In addition, the Particle Swarm Optimization and Rao algorithms are improved to obtain the optimal PV array configuration under PSC. The operation of switching is enhanced by simultaneously considering the total switching times and the operation of highly active switches. The simulation results on the 9×9 PV array demonstrate the effectiveness of the proposed framework in terms of reducing the number of local maximum power points on the power-voltage characteristic, enhancing power output, and relieving stress on the switching operation of the PV array under different PSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.