Abstract

A hot air drying system equipped with real-time computer vision system was used to investigate the effects of drying variables on apple slices color changes. Drying experiments were conducted at drying air temperatures of 50–70°C, drying air velocities of 1–2m/s, and samples thicknesses of 2–6mm. A multilayer perceptron (MLP) artificial neural network (ANN) was also used to correlate color parameters and moisture content of apple slices with drying variables and drying time. The effects of drying air temperature and sample thickness on color changes were dominated over the effect of drying air velocity. However, non-linear and somewhat complex trends were obtained for all color parameters as function of moisture content. The MLP ANN satisfactorily approximated the color and moisture variations of apple slices with correlation coefficient higher than 0.92. Therefore, the computer vision system supplemented with ANN can be used as a non-invasive, low cost, and easy method for fast and in-line assessing and controlling of foodstuffs color and moisture changes during drying.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.