Abstract

Abstract End‐member, continuous and degenerate reactions are derived for the multisystem with the six components Na2O, CaO, (Mg/Fe)O, Al2O3, SiO2, H2O among the phases plagioclasess, garnetss, amphiboless, cpx, opx, olivine, spinel, quartz and an aqueous fluid. The chemography of this system is degenerate due to the co‐linearity 2Opx = Ol + Qtz. This co‐linearity has its implications both on reaction space and phase equilibria.From a total of 28 reaction systems, reaction space is derived for nine subsystems (phases in parentheses are absent): Case A1: (Cpx,Ol) (Cpx,Opx) and (Cpx,Qtz), Case A2: (Spl,Ol) (Spl,Opx) and (Spl,Qtz), Case B: (Ol,Opx) (Ol,Qtz) and (Opx,Qtz).In the absence of either cpx or spl (case A), three reactions form an invariant point, either [Cpx] or [Spl], where the co‐linear phases olivine, opx and quartz coexist on the transformation line 2Opx = Ol + Qtz. Changing mineral compositions force invariant points to move along the line with the different reaction curves changing their relative position according to Schreinemakers’rules. Zero contours, i.e. the location where (a) phase(s) disappear(s) in reaction space correspond to singular points in phase diagrams. Two types are distinguished; singular points of indispensable and of substitutable phases. In the first case the phase disappears from the entire bundle while in the second it disappears from a single reaction. In the specific case where the substitutable phases are also the co‐linear ones, two of the three co‐linear phases disappear simultaneously. Two of the three reaction curves coincide.In the system including Cpx and Spl (Case B) three reactions, (Ol,Opx) (Ol,Qtz) and (Opx,Qtz), oppose three invariant points, [Ol], [Opx] and [Qtz]. Invariant points no longer move along the line 2Opx = Ol + Qtz. The coincidence of the zero contours of all three co‐linear phases in reaction space‐the result of the chemographic degeneracy‐causes the respective singular points to coincide in the phase diagrams. This is the location where curves must be rearranged in a bundle to conform Schreinemakers’rules.The reaction Grs1Prp2= 2 Ol + An is fourth order degenerate and part of all nine subsystems (cases A and B). It can be used to relate the different phase diagrams to one another.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.