Abstract

The standard formulation of quantum error correction (QEC) comprises repeated cycles of error estimation and corrective intervention in the free dynamics of a qubit register. QEC can thus be seen as a form of feedback control, and it is of interest to seek a deeper understanding of the connection between the associated theories. Here we present a focused case study within this broad program, connecting continuous QEC with elements of hybrid control theory. We show that canonical methods of the latter engineering discipline, such as recursive filtering and dynamic programming approaches to solving the optimal control problem, can be applied fruitfully in the design of separated controller structures for quantum memories based on coding and continuous syndrome measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.