Abstract
Poly(hydroxyalkanoates) (PHAs) constitute biodegradable polyesters and are considered among the most promising candidates to replace common petrochemical plastics in various applications. To date, all commercial processes for PHA production employ microbial discontinuous fed-batch fermentations. These processes feature drawbacks such as varying product quality and the inevitable periods of downtime for preparation and post-treatment of the bioreactor equipment. An unprecedented approach to PHA production was chosen in the presented work using a multistage system consisting of five continuous stirred tank reactors in series (5-SCR), which can be considered as a process engineering substitute of a continuous tubular plug flow reactor. The first stage of the reactor cascade is the site of balanced bacterial growth; thereafter, the fermentation broth is continuously fed from the first into the subsequent reactors, where PHA accumulation takes place under nitrogen-limiting conditions. Cupriavidus necator was used as production strain. The focus of the experimental work was devoted to the development of a PHA production process characterized by high productivity and high intracellular polymer content. The results of the experimental work with the reactor cascade demonstrated its potential in terms of volumetric and specific productivity (1.85 g L⁻¹ h⁻¹ and 0.100 g g⁻¹ h⁻¹, respectively), polymer content (77%, w/w) and polymer properties (M (w) = 665 kg/mol, PDI = 2.6). Thus, implementing the technology for 5-SCR production of PHB results in an economically viable process. The study compares the outcome of the work with literature data from continuous two-stage PHA production and industrial PHA production in fed-batch mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.