Abstract

Continuous metal matrix composite strip casting (MMCS-ing) composed of six 0.3-mm diameter annealed bare copper wires in a eutectic SnPb matrix was manufactured by a two-roll melt dragged processing (TRMD-ing) method at a rate of 0.3 m/s. The wires were dragged through a semisolid pool with a fibre contact time of approximately 0.2 s. The required gap between rolls to thixoforge the semisolid material around the wire filaments was approximately 1.4 mm. A successful continuous composite strip casting was achieved with a notably good degree of wire alignment. No cracks were observed at the copper wire/matrix interface. However, regions of porosity occurred in the matrix; their possible formation mechanisms are discussed. The solidification structure of the matrix was analysed, and the analysis results indicated the formation of small globular grains measuring approximately 3 μm in diameter. The specimens were evaluated for their tensile properties and compared with the rule of mixtures. The surface fracture analysis indicated a good matrix/fibre union. MMCS-ing is an economically viable process and has significant advantages over other metal matrix composite (MMC) fabrication methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.