Abstract

High-energy-density liquid fuels can be utilized as an energetic supplement to conventional fuels and are essential for volume-limited aerospace vehicles to boost payload and flying range. JP-10 has attracted much attention because of its high density, flash point, high volumetric heat, and low freezing point. Here we report the hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene (the main component of JP-10) was investigated over the TiO2/SO4 supported Ba(10 %)/Se(5–20 %) catalysts. This work aims to examine changes in continuous processing settings to maximize exo-THDCPD production, selectivity, and conversion. It was discovered that the synthesized TiO2/SO4/Ba(10 %)/Se(5–20 %) heterogeneous catalysts were novel, more effective, affordable, environmentally friendly, and simple to produce. The catalyst’s physicochemical characteristics were examined using FT-IR, BET, XRD, HR-SEM, HR-TEM, TGA and NH3-TPD. The produced TiO2/SO4/Ba(10 %)/Se(5–20 %) nano-catalysts have good catalytic activity and a wide range of active Lewis and Brønsted acid sites. Evaluation of the isomerization of endo-THDCPD to exo-THDCPD was conducted in a high-pressure fixed-bed continuous reactor operating at 200 °C, 20 bar of pressure, and 4.0mol/h of H2 flow rate. According to the investigations, the synthesized catalyst with a 15 % Se load performs exceptionally well, exhibiting 100 % conversion, 98.5 % selectivity, and 98.5 % yield at an H2 flow rate of 10 ml/min. The isomerized product is used in Jet Propellant-10, a high-density fuel. Under ideal circumstances, exo-THDCPD with a high degree of purity (>98 wt%) was produced without the need for any sort of separation technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.