Abstract

A continuous solid-state process inside a roller furnace has been used to fabricate Bi-2212 powders. These powders were synthesized for their use as precursors to obtain textured monoliths by laser induced directional solidification. A thermal cycle has been defined, which depends on the length of the furnace, the prefixed temperature profile and the velocity of the sample inside the furnace. Powder properties have been studied as a function of the number of processing cycles. Phase evolution has been analyzed using X-ray diffraction, while other relevant properties of the powders, including grain size distribution, thermal behavior and temperature dependence of the AC susceptibility, have also been measured. These properties have been compared with those of commercial powders and precursors prepared using a standard solid-state protocol. Textured samples using these continuous solid-state precursors exhibit superconducting properties comparable to those similarly processed but prepared from commercial powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.