Abstract

The appearance of a convex dip in the microcanonical entropy of finite systems usually signals a first order transition. However, a convex dip also shows up in some systems with a continuous transition as, for example, in the Baxter-Wu model and in the four-state Potts model in two dimensions. We demonstrate that the appearance of a convex dip in those cases can be traced back to a finite-size effect. The properties of the dip are markedly different from those associated with a first order transition and can be understood within a microcanonical finite-size scaling theory for continuous phase transitions. Results obtained from numerical simulations corroborate the predictions of the scaling theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call