Abstract
Microparticle separation and concentration based on size has become indispensable in many biomedical and environmental applications. In this paper we describe a passive microfluidic device with spiral microchannel geometry for complete separation of particles. The design takes advantage of the inertial lift and viscous drag forces acting on particles of various sizes to achieve differential migration, and hence separation, of microparticles. The dominant inertial forces and the Dean rotation force due to the spiral microchannel geometry cause the larger particles to occupy a single equilibrium position near the inner microchannel wall. The smaller particles migrate to the outer half of the channel under the influence of Dean forces resulting in the formation of two distinct particle streams which are collected in two separate outputs. This is the first demonstration that takes advantage of the dual role of Dean forces for focusing larger particles in a single equilibrium position and transposing the smaller particles from the inner half to the outer half of the microchannel cross-section. The 5-loop spiral microchannel 100 microm wide and 50 microm high was used to successfully demonstrate a complete separation of 7.32 microm and 1.9 microm particles at Dean number De = 0.47. Analytical analysis supporting the experiments and models is also presented. The simple planar structure of the separator offers simple fabrication and makes it ideal for integration with on-chip microfluidic systems, such as micro total analysis systems (muTAS) or lab-on-a-chip (LOC) for continuous filtration and separation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.