Abstract

A new method for continuous size separation and collection of particles in microfabricated devices, asymmetric pinched flow fractionation (AsPFF), has been proposed and demonstrated. This method improves the separation scheme of pinched flow fractionation (PFF), which utilizes a laminar flow profile inside a microchannel. In this study, multiple branch channels with different channel dimensions were arranged at the end of the pinched segment, so that the flow rate distributions to each branch channel were varied, and a large part of the liquid was forced to go through one branch channel (drain channel). In the proposed channel system, the flow profile inside the microchannel was asymmetrically amplified, enabling the separation of one-order smaller particles compared with PFF. After introducing the method, we examined the effect of the asymmetric amplification by controlling the outlet of the drain channel. Also, a mixture of 1.0 approximately 5.0 microm particles was separated, and erythrocytes were successfully separated from blood. The results indicate that the AsPFF method could be applied to the separation of much smaller-size particles, since more precise separation can be achieved simply by changing the geometries of branch channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call