Abstract
External magnetic field is a powerful approach to induce orientational order in originally disordered suspensions of magneto-responsive anisotropic particles. By small angle neutron scattering and optical birefringence measurement technology, we investigated the effect of magnetic field on the spatial ordering of hybrid amyloid fibrils with different aspect ratios (length-to-diameter) and flexibilities decorated by spherical Fe3O4 nanoparticles. A continuous paranematic ordering from an initially isotropic suspension was observed upon increasing magnetic field strength, with spatial orientation increasing with colloidal volume fraction. At constant dimensionless concentration, stiff hybrid fibrils with varying aspect ratios and volume fractions, fall on the same master curve, with equivalent degrees of ordering at identical magnetic fields. However, the semiflexible hybrid fibrils with contour length close to persistence length exhibit a lower degree of alignment. This is consistent with Khokhlov-Semenov theoretical predictions. These findings sharpen the experimental toolbox to design colloidal systems with controllable degree of orientational ordering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.