Abstract

BACKGROUND: Excess heat accrual is perhaps the body’s most dangerous exercise-induced stressor. While palm cooling uses conduction to reduce body temperatures, to date the volume of heat transferred by this treatment resulting from exercise is unknown. OBJECTIVE: Asses continuous palm cooling’s impact on heat transfer and physiology. METHODS: Thirty-one subjects did two workouts; one with, and one without, palm cooling. Workouts entailed consecutive stages of submaximal pedaling against prescribed workloads. Gloves were worn at workouts; for palm cooling 10.6∘C gel packs were inserted into gloves at the workout’s start and conclusion. Heart rate, auditory canal and palm skin temperatures, and heat transfer across the palm were collected. Data were obtained pre-exercise, at the end of a warm-up, and at multiple times during the 25 minutes of pedaling and 30 minutes of recovery. RESULTS: Auditory canal temperatures had a significant treatment effect (palm cooling < non-palm cooling). Palm skin temperature had an interaction, with higher non-palm cooling values at multiple times. Conversely, heat transfer also produced an interaction, but palm cooling had significantly higher values at multiple times. Heat transfer was 32% higher for the palm cooling workout. CONCLUSIONS: Continuous palm cooling produced significantly higher heat transfer from submaximal exercise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call