Abstract

In this paper, we study a novel form of continuous nearest neighbor queries in the presence of obstacles, namely continuous obstructed nearest neighbor (CONN) search. It considers the impact of obstacles on the distance between objects, which is ignored by most of spatial queries. Given a data set P, an obstacle set O, and a query line segment q in a two-dimensional space, a CONN query retrieves the nearest neighbor of each point on q according to the obstructed distance, i.e., the shortest path between them without crossing any obstacle. We formulate CONN search, analyze its unique properties, and develop algorithms for exact CONN query processing, assuming that both P and O are indexed by conventional data-partitioning indices (e.g., R-trees). Our methods tackle the CONN retrieval by performing a single query for the entire query segment, and only process the data points and obstacles relevant to the final result, via a novel concept of control points and an efficient quadratic-based split point computation algorithm. In addition, we extend our solution to handle the continuous obstructed k-nearest neighbor (COkNN) search, which finds the k (≥1)nearest neighbors to every point along q based on obstructed distances. A comprehensive experimental evaluation using both real and synthetic datasets has been conducted to demonstrate the efficiency and effectiveness of our proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.