Abstract

Therapeutic effects of photodynamic therapy (PDT) are limited by cancer hypoxia because the PDT process is dependent on O2 concentration. Herein, we design biocompatible manganese ferrite nanoparticle-anchored mesoporous silica nanoparticles (MFMSNs) to overcome hypoxia, consequently enhancing the therapeutic efficiency of PDT. By exploiting the continuous O2-evolving property of MnFe2O4 nanoparticles through the Fenton reaction, MFMSNs relieve hypoxic condition using a small amount of nanoparticles and improve therapeutic outcomes of PDT for tumors in vivo. In addition, MFMSNs exhibit T2 contrast effect in magnetic resonance imaging (MRI), allowing in vivo tracking of MFMSNs. These findings demonstrate great potential of MFMSNs for theranostic agents in cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call