Abstract

DC-DC converters work as one of the crucial components in DC microgrid intergraded power systems. In this brief, the robust output voltage regulation problem of DC-DC boost converter system is addressed by using a continuous nonsingular terminal sliding mode control (CTSMC) technique based on finite-time disturbance observer. By integrating the disturbance estimations into the controller design, an improved sliding mode control (SMC) approach is developed to achieve better voltage tracking performance. The proposed control method admits the properties of fast transient responses, strong suppression ability against time-varying disturbances and small steady state oscillations of output voltage. Experimental results in the presence of both load variations and supplied voltage fluctuations are provided to validate the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.