Abstract
To ensure high quality output of biotechnological processes, relevant process parameters need to be monitored. As bioprocesses are increasingly executed in single use bioreactors, there is an increasing demand for new sensors applicable to these processes. In this work, we investigate different approaches for continuous non-invasive cell growth monitoring, especially for single use bioreactor applications. Therefore, the permittivity of the cell culture is used as a measure for the biomass. In a first step, a measuring procedure based on the transmission measurement of an electromagnetic wave is investigated. It appears that the penetration depth of this sensor is not sufficient for a noninvasive measurement through the polymer wall of a single use bioreactor. Therefore, alternative setups based on magnetic induction are investigated. The initial setup is very simple. It consists of a planar coil connected to an impedance analyzer. The coil is attached to the outside of the polymer foil of the single use bioreactor and an impedance spectrum is measured. To evaluate the sensor, E. coli cultivations are performed in a modified cultivation setup, which enables measurements through the polymer foil of a Sartorius BIOSTAT® CultiBag RM, and additionally allows sampling of culture medium for optical density reference measurements. The resonance peak of the coil in the impedance spectrum, is observed as measure for the optical density. Regardless of the simple sensor construction, we found a good correlation between optical density and the damping ratio of the resonance peak. However, the sensor signal shows saturation towards high optical densities. Therefore, an LTCC coil producing a higher magnetic flux density in the culture medium is investigated subsequently. This sensor shows a linear response up to high optical densities, but the sensitivity is reduced compared to the former used coil and therefore scattering of the data is increased. However, to increase the sensitivity, a linear variable differential transformer is realized. Using this setup, the influence of the primary magnetic flux is eliminated from the measuring voltage. This approach delivers the most promising results, as the sensor response is linear up to high optical densities and data scattering is low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.