Abstract

Although ammonia (NH3) synthesis efficiency from the NO reduction reaction (NORR) is significantly promoted in recent years, one should note that NO is one of the major air pollutants in the flue gas. The limited NO conversion ratio is still the key challenge for the sustainable development of the NORR route, which potentially contributes more to contaminant emissions rather than its upcycling. Herein, we provide a simple but effective approach for continuous NO reduction into NH3, promoted by coexisting SO2 poison as a gift in the flue gas. It is significant to discover that SO2 plays a decisive role in elevating the capacity of NO absorption and reduction. A unique redox pair of SO2-NO is constructed, which contributes to the exceptionally high conversion ratio for both NO (97.59 ± 1.42%) and SO2 (99.24 ± 0.49%) in a continuous flow. The ultrahigh selectivity for both NO-to-NH3 upcycling (97.14 ± 0.55%) and SO2-to-SO42- purification (92.44 ± 0.71%) is achieved synchronously, demonstrating strong practicability for the value-added conversion of air contaminants. The molecular mechanism is revealed by comprehensive in situ technologies to identify the essential contribution of SO2 to NO upcycling. Besides, realistic practicality is realized by the efficient product recovery and resistance ability against various poisoning effects. The proposed strategy in this work not only achieves a milestone efficiency for NH3 synthesis from the NORR but also raises great concerns about contaminant resourcing in realistic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call