Abstract

Due to the lag problem of traditional sensor acquisition data, the following movement of exoskeleton robots can affect the comfort of the wearer and even the normal movement pattern of the wearer. In order to solve the problem of lag in exoskeleton motion control, this paper designs a continuous motion estimation method for lower limbs based on the human surface electromyographic (sEMG) signal and achieves the recognition of the motion intention of the wearer through a combination of the deep belief network (DBN) and random forest (RF) algorithm. First, the motion characteristics of human lower limbs are analyzed, and the hip-knee angle and sEMG signal related to lower limb motion are collected and extracted; then, the DBN is used in the dimensionality reduction of the sEMG signal feature values; finally, the motion intention of the wearer is predicted using the RF model optimized by the genetic algorithm. The experimental results show that the root mean square error of knee and hip prediction results of the combined algorithm proposed in this article improved by 0.2573° and 0.3375°, respectively, compared to the algorithm with dimensionality reduction by principal component analysis, and the single prediction time is 0.28 ms less than that before dimensionality reduction, provided that other conditions are exactly the same.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call