Abstract

There is an unmet need for improved fertilizer management in agriculture. Continuous monitoring of soil nitrate would address this need. This paper reports an all-solid-state miniature potentiometric soil sensor that works in direct contact with soils to monitor nitrate-nitrogen (NO3--N) in soil solution with parts-per-million (ppm) resolution. A working electrode is formed from a novel nanocomposite of poly(3-octyl-thiophene) and molybdenum disulfide (POT-MoS2) coated on a patterned Au electrode and covered with a nitrate-selective membrane using a robotic dispenser. The POT-MoS2 layer acts as an ion-to-electron transducing layer with high hydrophobicity and redox properties. The modification of the POT chain with MoS2 increases both conductivity and anion exchange, while minimizing the formation of a thin water layer at the interface between the Au electrode and the ion-selective membrane, which is notorious for solid-state potentiometric ion sensors. Therefore, the use of POT-MoS2 results in an improved sensitivity and selectivity of the working electrode. The reference electrode comprises a screen-printed silver/silver chloride (Ag/AgCl) electrode covered by a protonated Nafion layer to prevent chloride (Cl-) leaching in long-term measurements. This sensor was calibrated using both standard and extracted soil solutions, exhibiting a dynamic range that includes all concentrations relevant for agricultural applications (1-1500 ppm NO3--N). With the POT-MoS2 nanocomposite, the sensor offers a sensitivity of 64 mV/decade for nitrate detection, compared to 48 mV/decade for POT and 38 mV/decade for MoS2. The sensor was embedded into soil slurries where it accurately monitored nitrate for a duration of 27 days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.