Abstract

This paper reports the characterization of an electrochemical biosensor for the continuous monitoring of Naproxen based on cytochrome P450. The electrochemical biosensor is based on the drop-casting of multi-walled carbon-nanotubes (MWCNTs) and microsomal cytochrome P4501A2 (msCYP1A2) on a graphite screen-printed electrode (SPE).The proposed biosensor was employed to monitor Naproxen (NAP), a well-known anti-inflammatory compound, through cyclic voltammetry. The dynamic linear range for the amperometric detection of NAP had an upper limit of 300µM with a corresponding limit of detection (LOD) of 16±1µM (S/N=3), which is included in NAP physiological range (9–300µM). The MWCNT/msCYP1A2-SPE sensor was also calibrated for NAP detection in mouse serum that was previously extracted from mice, showing a slightly higher LOD (33±18µM).The stability of the msCYP1A2-based biosensor was assessed by longtime continuous cyclic voltammetric measurements. The ability of the sensor to monitor drug delivery was investigated by using a commercial micro-osmotic pump. Results show that the MWCNT/msCYP1A2-SPE sensor is capable of precisely monitoring the real-time delivery of NAP for 16h. This work proves that the proposed electrochemical sensor might represent an innovative point-of-care solution for the personalization of drug therapies, as well as for pharmacokinetic studies in both animals and humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.