Abstract
The past decade has witnessed many interesting algorithms for maintaining statistics over a data stream. This paper initiates a theoretical study of algorithms for monitoring distributed data streams over a time-based sliding window (which contains a variable number of items and possibly out-of-order items). The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to be able to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is $O(\frac{k}{\varepsilon} \log \frac{\varepsilon N}{k})$ bits for basic counting and $O(\frac{k}{\varepsilon} \log \frac{N}{k})$ words for the remainings, where $k$ is the number of distributed data streams, $N$ is the total number of items in the streams that arrive or expire in the window, and $\varepsilon < 1$ is the desired error bound. Matching and nearly matching lower bounds are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.