Abstract

Residential and commercial buildings account for more than 40% of U.S. energy consumption, most of which is related to heating, ventilation and air conditioning (HVAC). Consequently, energy conservation is important to building owners and to the economy generally. In this paper we describe a process under development to continuously evaluate a building’s heating and cooling energy performance in near real-time with a procedure we call Continuous Monitoring, Modeling, and Evaluation (CMME). The concept of CMME is to model the expected operation of a building energy system with actual weather and internal load data and then compare modeled energy consumption with actual energy consumption. For this paper we modeled two buildings on the Georgia Institute of Technology campus. After creating our building models, internal lighting loads and equipment plug-loads were collected through electrical sub-metering, while the building occupancy load was recorded using doorway mounted people counters. We also collected on site weather and solar radiation data. All internal loads were input into the models and simulated with the actual weather data. We evaluated the building’s overall performance by comparing the modeled heating and cooling energy consumption with the building’s actual heating and cooling energy consumption. Our results demonstrated generally acceptable energy performance for both buildings; nevertheless, certain specific energy inefficiencies were discovered and corrective actions are being taken. This experience shows that CMME is a practical procedure for improving the performance of actual well performing buildings. With improved techniques, we believe the CMME procedure could be fully automated and notify building owners in real-time of sub-optimal building performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call