Abstract

The present study investigated to find out the suitability of the CO2 sequestered algal biomass of Chlorella sorokiniana as substrate for the hydrogen production by Enterobacter cloacae IIT-BT 08. The maximum biomass productivity in continuous mode of operation in autotrophic condition was enhanced from 0.05 g L(-1) h(-1) in air to 0.11 g L(-1) h(-1) in 5% air-CO2 (v/v) gas mixture at an optimum dilution rate of 0.05 h(-1). Decrease in steady state biomass and productivity was less sensitive at higher dilution and found fitting with the model proposed by Eppley and Dyer (1965). Pretreated algal biomass of 10 g L(-1) with 2% (v/v) HCl-heat was found most suitable for hydrogen production yielding 9±2 mol H2 (kg COD reduced)(-1) and was found fitting with modified Gompertz equation. Further, hydrogen energy recovery in dark fermentation was significantly enhanced compared to earlier report of hydrogen production by biophotolysis of algae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.