Abstract

Continuous small-scale processes can enable faster process development and reduce time-to-market. However, for continuous crystallization, there are some hurdles, too, regarding suspension handling. Therefore, to overcome clogging issues concerning the product discharge, due to the smaller dimensions of a continuous draft tube baffle (DTB) crystallizer, a particle screw for supportive suspension discharge was developed and has been described throughout this work. First, the design of the particle screw is described. Furthermore, the particle screw is characterized, and cooling crystallization experiments (with l-alanine/water) are performed with a miniaturized (2 L) DTB. The presented particle screw showed negligible abrasion effects to the conveyed crystals. The investigations showed that the residence time of different particle sizes depends on the particle screw speed. Additionally, the continuous cooling crystallization experiments with 15 g min–1 confirm the supporting character of the suspension discharge by the particle screw. Thus, the newly developed particle screw for a supportive suspension discharge is well suited for continuous small-scale crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.