Abstract

The objective of this research was to study the methyl ester purity and pressure drop when the reactants flowed through the 3D-printed continuous static mixer reactor. The various types of 3D-printed mixing elements: KSM, LSM, SMX-3, SMX-4, SMX-5, SMV-3, SMV-4, and SMV-5 were inserted into the tube to blend the refined palm oil (RPO) and potassium methoxide (CH3KO) during the transesterification process. Therefore, the comparison of various types and plug flow (PF) reactors in continuous methyl ester production was carried out to assessed the purity of methyl ester with the condition was 23.81 vol.% methanol and 11.8 wt.% KOH at 50°C temperature. The results showed that the pressure drop had increased when a flow rate of water was increased. The pressure drop in the continuous reactor increased to 29.9% of SMV-5, 19.9% of SMV-4, 12.0% of SMV-3, 7.0% of SMX-5, 7.0% of SMX-4, 7.0% of SMX-3, 3.6% of LSM and 0.9% of KSM when compared with the empty tube cases. According to biodiesel production, the purity of methyl ester decreased by 93.63% of SMV-5, 92.49% of SMV-4, 91.63% of SMV-3, 51.68% of SMX-5, 47.47% of LSM, 46.17% of SMX-4, 45.31% of SMX-3, 42.36% of KSM, and 12.28% of PF, respectively, when compared to the highest purities achieved with PF reactor. Thus, a 662% improvement in ester purity was obtained by using the SMV-5 reactor instead of the PF reactor within 360 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call