Abstract

Short chain carboxylic acids (SCCAs) production is one of the primary ways to recycle excess sludge (ES). However, the high cost for the SCCAs separation/extraction due to its complete miscibility in water hinders the practical application of SCCAs and the popularization of this recycling way. To overcome this barrier, this study performed an emerging chain elongation (CE) technology to upgrade the SCCAs-rich sludge fermentation broth into the highly hydrophobic medium chain carboxylic acids (MCCAs). In a continuous expanded granule sludge bed (EGSB) reactor, a maximal MCCAs yield of 67.39 % and the corresponding concentration of 9.80 g COD/L (224.97 mM C/L) were achieved. By supplying CO2 at a loading rate of 2 LCO2/(L∙d) to lower the hydrogen partial pressure, the ethanol utilization rate and the resulting MCCAs yield were further improved. In addition, three branched-MCCAs including iso-caproate, iso-heptylate, and iso-caprylate were obtained the first time from waste biomass with the average proportions of 6.17 %, 3.65 %, and 0.8 %, respectively. The branched-MCCAs came from the CE of branched-SCCAs. The granule sludges performing CE were mainly consisted of rod-shaped cells, and dominated by Clostridium sensu stricto and Clostridium IV. This study is expected to lay a foundation for recycling ES to MCCAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call