Abstract
Author(s): Yang, C; Niu, F; Daley, TM; Taira, T | Abstract: In situ stress measurement at seismogenic depth is critically important for deciphering fault zone processes. In this study, we conducted a second active-source crosswell field experiment at the Parkfield San Andreas Fault Observatory at Depth (SAFOD) drill site to investigate the detectability of stress-induced seismic velocity changes at the top part of the seismogenic zone. We employed the same configuration of our previous experiments, which deployed a piezoelectric source and a three-component (3C) accelerometer at 1 km deep inside the pilot and main holes, respectively. We also added a hydrophone, which is attached to the source, to monitor the repeatability of the source waveforms. Over a 40-day recording period, we confirmed an ∼0:04% travel-time variation in S wave and coda that roughly follows the fluctuation of barometric pressure. We attributed this correlation to stress sensitivity of seismic velocity and the stress sensitivity is estimated to be 2:0 × 10 −7 Pa −1 , which is approximately two orders of magnitude higher than those measured in laboratory with dry rock samples, but is consistent with our previous results. Our results confirm the hypothesis that substantial cracks and/or pore spaces exist at seismogenic depths and thus may be used to monitor the subsurface stress field with active-source crosswell seismic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.