Abstract
Measurement of film thickness between piston ring and cylinder bore has been a challenge for decades; laser induced fluorescence method (LIF) was used by several groups and promising results are obtained for the investigation of lubricant film transport. In this study, blue light generated by a laser source is transmitted to a beam splitter by means of a fiber optic cable and combined with another fiber optic line, then transmitted to the piston ring and cylinder bore conjunction. The light causes the fluorescence dye present in the lubricant to emit light in a longer wavelength, i.e. green. Reflected light is recollected; blue wavelength components are filtered out using a narrow band pass optical filter, and only components in the florescence wavelength is transmitted to a photomultiplier tube. The photomultiplier produces a voltage proportional instantaneous lubricant film thickness. Then, the photomultiplier signal is calibrated for lubricant film thickness using a laser textured cylinder bore with known geometries. Additional marks were etched on the liner for calibration. The LIF system is adapted to a piston ring and cylinder bore friction test system simulating engine conditions. Static piston ring and reciprocating liner configuration of the bench test system allows the collection of continuous lubricant film thickness data as a function of crank angle position. The developed system has potential to evaluate new designs, materials and surface properties in a controlled and repeatable environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.