Abstract
Abstract Residual deep neural networks (ResNets) are mathematically described as interacting particle systems. In the case of infinitely many layers the ResNet leads to a system of coupled system of ordinary differential equations known as neural differential equations. For large scale input data we derive a mean–field limit and show well–posedness of the resulting description. Further, we analyze the existence of solutions to the training process by using both a controllability and an optimal control point of view. Numerical investigations based on the solution of a formal optimality system illustrate the theoretical findings.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Applied and Industrial Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.