Abstract
Quantum walks can be defined in two quite distinct ways: discrete-time and continuous-time quantum walks (DTQWs and CTQWs). For classical random walks, there is a natural sense in which continuous-time walks are a limit of discrete-time walks. Quantum mechanically, in the discrete-time case, an additional "coin space" must be appended for the walk to have nontrivial time evolution. Continuous-time quantum walks, however, have no such constraints. This means that there is no completely straightforward way to treat a CTQW as a limit of DTQW, as can be done in the classical case. Various approaches to this problem have been taken in the past. We give a construction for walks on $d$-regular, $d$-colorable graphs when the coin flip operator is Hermitian: from a standard DTQW we construct a family of discrete-time walks with a well-defined continuous-time limit on a related graph. One can think of this limit as a {\it coined} continuous-time walk. We show that these CTQWs share some properties with coined DTQWs. In particular, we look at spatial search by a DTQW over the 2-D torus (a grid with periodic boundary conditions) of size $\sqrt{N}\times\sqrt{N}$, where it was shown \nocite{AAmbainis08} that a coined DTQW can search in time $O(\sqrt{N}\log{N})$, but a standard CTQW \nocite{Childs2004} takes $\Omega(N)$ time to search for a marked element. The continuous limit of the DTQW search over the 2-D torus exhibits the $O(\sqrt{N}\log{N})$ scaling, like the coined walk it is derived from. We also look at the effects of graph symmetry on the limiting walk, and show that the properties are similar to those of the DTQW as shown in \cite{HariKrovi2007}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.