Abstract

The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames which is important for frame applications, have been specified completely for the continuous frames. After improving and extending the concept of fusion frames and continuous frames, in this paper we introduce continuous $k$-fusion frames in Hilbert spaces. Similarly to the c-fusion frames, dual of continuous $k$-fusion frames may not be defined, we however define the $Q$-dual of continuous $k$-fusion frames. Also some new results and the perturbation of continuous $k$-fusion frames will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.