Abstract

One of the most important queries in spatio-temporal databases that aim at managing moving objects efficiently is the continuous K-nearest neighbor (CKNN) query. A CKNN query is to retrieve the K-nearest neighbors (KNNs) of a moving user at each time instant within a user-given time interval [t s , t e ]. In this paper, we investigate how to process a CKNN query efficiently. Different from the previous related works, our work relieves the past assumption, that an object moves with a fixed velocity, by allowing that the velocity of the object can vary within a known range. Due to the introduction of this uncertainty on the velocity of each object, processing a CKNN query becomes much more complicated. We will discuss the complications incurred by this uncertainty and propose a cost-effective P2 KNN algorithm to find the objects that could be the KNNs at each time instant within the given query time interval. Besides, a probability-based model is designed to quantify the possibility of each object being one of the KNNs. Comprehensive experiments demonstrate the efficiency and the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.