Abstract

The Cambridge Structural Database (CSD) played a key role in the recently established crystal isometry principle (CRISP). The CRISP says that any real periodic crystal is uniquely determined as a rigid structure by the geometry of its atomic centers without atomic types. Ignoring atomic types allows us to study all periodic crystals in a common space whose continuous nature is justified by the continuity of real-valued coordinates of atoms. Our previous work introduced structural descriptors pointwise distance distributions (PDD) that are invariant under isometry defined as a composition of translations, rotations, and reflections. The PDD invariants distinguished all nonduplicate periodic crystals in the CSD. This paper presents the first continuous maps of the CSD and its important subsets in invariant coordinates that have analytic formulas and physical interpretations. Any existing periodic crystal has a uniquely defined location on these geographic-style maps. Any newly discovered periodic crystals will appear on the same maps without disturbing the past materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call