Abstract
AbstractWe consider implicit and semi‐implicit time‐stepping methods for continuous interior penalty (CIP) finite element approximations of Sobolev equations with convection‐dominated term. Stability is obtained by adding an interior penalty term giving L2 ‐control of the jump of the gradient over element faces. Several $\cal {A}$ ‐stable time‐stepping methods are analyzed and shown to be unconditionally stable and optimally convergent. We show that the contribution from the gradient jumps leading to an extended matrix pattern may be extrapolated from previous time steps, and hence handled explicitly without loss of stability and accuracy. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.