Abstract

Viruses transmitted by water have raised considerable concerns for public health. A novel memory photocatalyst of g-C3N4/WO3/biochar was successfully developed for effective inactivation of human adenoviruses (HAdVs) in water, in which WO3 as an electron-storage reservoir and biochar as an electron shuttle is employed to synergistically improve photocatalytic activity of g-C3N4. The tertiary composite exhibited continuous photocatalytic performance for HAdVs inactivation without regrowth in water under light-dark cycles, i.e., ∼3.9-log inactivation under 6-h visible light irradiation and an additional ∼1.1-log inactivation under the following 6-h dark. The enhanced virucidal mechanism was attributed to the heterojunction formation and especially the electron-transfer pathway switching via biochar incorporation, contributing to electron transfer and storage in the light phase and then electron release in the dark phase, along with obviously increased generation of the virus-killing •OH radicals under light-dark cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.