Abstract

Radar-based human motion recognition is crucial for many applications, such as surveillance, search and rescue operations, smart homes, and assisted living. Continuous human motion recognition in real-living environment is necessary for practical deployment, i.e., classification of a sequence of activities transitioning one into another, rather than individual activities. In this paper, a novel dynamic range-Doppler trajectory (DRDT) method based on the frequency-modulated continuous-wave (FMCW) radar system is proposed to recognize continuous human motions with various conditions emulating real-living environment. This method can separate continuous motions and process them as single events. First, range-Doppler frames consisting of a series of range-Doppler maps are obtained from the backscattered signals. Next, the DRDT is extracted from these frames to monitor human motions in time, range, and Doppler domains in real time. Then, a peak search method is applied to locate and separate each human motion from the DRDT map. Finally, range, Doppler, radar cross section (RCS), and dispersion features are extracted and combined in a multidomain fusion approach as inputs to a machine learning classifier. This achieves accurate and robust recognition even in various conditions of distance, view angle, direction, and individual diversity. Extensive experiments have been conducted to show its feasibility and superiority by obtaining an average accuracy of 91.9% on continuous classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.