Abstract

High-frequency stimulation (HFS) of basal ganglia and thalamic nuclei is an established treatment for various movement disorders and has recently been extended to other neuro-psychiatric conditions. Numerous experimental studies in small laboratory animals provided important insights in the mode of action of HFS. However, the interpretation of the results is often limited by the use of short-term HFS, while patients receive continuous stimulation for many years. One reason is the lack of an established model for the application of long-term HFS in small animals. Therefore, we thought to develop an implantable microstimulation system for small laboratory animals and to establish a protocol for long-term HFS by defining non-damaging stimulus parameters with respect to brain integrity. For this purpose, we designed a miniaturized, microcontroller-based, and programmable microstimulator that allows the reliable application of continuous HFS for up to 5 weeks. Chronic HFS (total stimulation time: 3 weeks) of the subthalamic nucleus with up to 100 μA (5.2 nC/phase) through monopolar electrodes comprising activated iridium did not induce significant tissue damage as assessed by various histological techniques (Nissl's, hematoxylin and eosin, Klüver-Barrera, van Gieson's staining, NeuN and GFAP-immunoreactivity). In conclusion, chronic HFS with an implantable stimulator can be successfully applied in small animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.