Abstract
This paper presents a method for pedestrian activity classification and gait analysis based on the microelectromechanical-systems inertial measurement unit (IMU). The work targets two groups of applications, including the following: 1) human activity classification and 2) joint human activity and gait-phase classification. In the latter case, the gait phase is defined as a substate of a specific gait cycle, i.e., the states of the body between the stance and swing phases. We model the pedestrian motion with a continuous hidden Markov model (HMM) in which the output density functions are assumed to be Gaussian mixture models. For the joint activity and gait-phase classification, motivated by the cyclical nature of the IMU measurements, each individual activity is modeled by a “circular HMM.” For both the proposed classification methods, proper feature vectors are extracted from the IMU measurements. In this paper, we report the results of conducted experiments where the IMU was mounted on the humans' chests. This permits the potential application of the current study in camera-aided inertial navigation for positioning and personal assistance for future research works. Five classes of activity, including walking, running, going upstairs, going downstairs, and standing, are considered in the experiments. The performance of the proposed methods is illustrated in various ways, and as an objective measure, the confusion matrix is computed and reported. The achieved relative figure of merits using the collected data validates the reliability of the proposed methods for the desired applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.