Abstract

We consider a simulated population of isolated Galactic neutron stars. The rotational frequency of each neutron star evolves through a combination of electromagnetic and gravitational wave emission. The magnetic field strength dictates the dipolar emission, and the ellipticity (a measure of a neutron star's deformation) dictates the gravitational wave emission. Through both analytic and numerical means, we assess the detectability of the Galactic neutron star population and bound the magnetic field strength and ellipticity parameter space of Galactic neutron stars with or without a direct gravitational wave detection. While our simulated population is primitive, this work establishes a framework by which future efforts can be conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.