Abstract
A continuous blood glucose monitoring system (CGMS) which include a microneedle-array blood glucose sensor, a circuit module, and a transmission module placed in a wearable device is developed in this research. When in use, the wearable device is attached to the human body with the microneedle array inserted under the skin for continuous blood glucose sensing, and the measured signals are transmitted wirelessly to a mobile phone or computer for analysis. The purpose of this study is to replace the conventionally used method of puncture for blood collection and test strips are used to measure the blood glucose signals. The microneedle sensor of this CGMS uses a 1 mm length needle in a 3 mm × 3 mm microneedle array for percutaneous minimally invasive blood glucose measurement. This size of microneedle does not cause bleeding damage to the body when used. The microneedle sensor is placed under the skin and their solutions are discussed. The blood glucose sensor measured the in vitro simulant fluid with a glucose concentration range of 50~400 mg/dL. In addition, a micro-transfer method is developed to accurately deposit the enzyme onto the tip of the microneedle, after which cyclic voltammetry (CV) is used to measure the glucose simulation solution to verify whether the difference in the amount of enzyme on each microneedle is less than 10%. Finally, various experiments and analyses are carried out to reduce the size of the device, test effective durability (approximately 7 days), and the feasibility of minimally invasive CGMS is evaluated by tests on two persons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.