Abstract

IntroductionGlycated hemoglobin A1c (HbA1c) has reduced reliability in advanced chronic kidney disease (CKD) owing to factors influencing red cell turnover. Recent guidelines support the use of continuous glucose monitoring (CGM) in glycemic assessment in these patients. We evaluated relationships between HbA1c and CGM metrics of average glycemia and glucose variability (GV) in moderate-to-advanced CKD.MethodsThere were a total of 90 patients with diabetes in CKD stages G3b (n = 33), G4 (n = 43), and G5 (nondialysis) (n = 14) (age [mean ± SD] 65.4 ± 9.0 years, estimated glomerular filtration rate [eGFR] 26.1 ± 9.6 ml/min per 1.73 m2, and HbA1c 7.4 ± 0.8%). CGM metrics were estimated from blinded CGM (Medtronic Ipro2 with Enlite sensor) and compared with HbA1c in the same week.ResultsCorrelations between glucose management indicator (GMI) and HbA1c attenuated with advancing CKD (G3b [r = 0.68, P < 0.0001], G4 [r = 0.52, P < 0.001], G5 [r = 0.22, P = 0.44], P = 0.01 for CKD stage). In G3b and G4, HbA1c correlated significantly with time-in-range (TIR) (3.9–10.0 mmol/l) (r = −0.55 and r = −0.54, respectively) and % time > 13.9 mmol/l (r = 0.53 and r = 0.44, respectively), but not in G5. HbA1c showed no correlation with % time <3.0 mmol/l (r = −0.045, P = 0.67) or % coefficient of variation (CV) (r = −0.05, P = 0.64) in any CKD stage. Only eGFR was a significant determinant of bias for the difference between GMI and HbA1c (difference −0.28%, 95% CI [−0.52 to −0.03] per 15 ml/min per 1.73 m2 decrement, P = 0.03).ConclusionCGM-derived indices might serve as an adjunct to HbA1c monitoring to guide glycemic management, especially in those with eGFR <30 ml/min per 1.73 m2. Time in hypoglycemia and glycemic variability are relevant glycemic targets for optimization not reflected by HbA1c.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call