Abstract

Glucose metabolism monitoring has emerged as a crucial method for analyzing the metabolic state of tumor cells. Conventional glucose measurement techniques only provide endpoint information and lack the ability for real-time monitoring. Therefore, it is imperative to develop a continuous and long-term monitoring approach to gain insights into cellular behavior and metabolic regulation. We developed a selective permeation outer membrane specifically designed for high glucose concentrations in cell culture, allowing continuous operation in the range of 0–32 mM, significantly exceeding the linear range of typical continuous glucose sensing systems (CGMS). The platform enabled real-time and continuous monitoring of glucose consumption during tumor cell proliferation, demonstrating high linearity, stability, and anti-interference in the cell culture medium. More importantly, by optimizing the electrode design, we achieved accurate and long-term online glucose monitoring for over seven days, double the current capacity. The prepared sensors have enabled continuous monitoring of glucose metabolism parameters in different cell lines, cell numbers and cells treated with different drugs, providing a promising strategy to explore cellular metabolism. The glucose monitoring platform holds tremendous potential in various fields, including drug screening, toxicology, cancer therapy and personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.