Abstract
Managing diabetes mellitus (DM) includes achieving acceptable blood glucose levels and minimizing the risk of complications from DM. The appropriate glucose sensing method is continuous glucose monitoring (CGM). Effective evaluation metrics that reflect glucose fluctuations can be realized. However, compared with self-monitoring of blood glucose (SMBG), CGM data are not easy to obtain. Therefore, this article studies a fusion model to achieve this objective, including Gaussian process regression (GPR) and long short-term memory (LSTM). Compared with the three commonly used LSTM, GPR, and support vector machine, the proposed model can construct accurate results. By using the constructed CGM data, the conventional metrics, such as the mean amplitude of glycemic excursion (MAGE), mean blood glucose (MBG), standard deviation (SD), and time in range (TIR), are calculated. These metrics and other variables are input into statistical methods to realize diabetic retinopathy risk assessment. In this way, the relationship between the glycemic variability of the constructed CGM data by the mathematical model and DR could be achieved. The utilized statistical methods include single-factor analysis and binary multivariate logistic regression analysis. Results show that fasting blood glucose, disease course, history of hypertension, MAGE and TIR are independent risk factors for DR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.