Abstract
A large number of demands for space on-orbit services to ensure the on-orbit system completes its specified tasks are foreseeable, and the efficiency and the security are the most significant factors when we carry out an on-orbit mission. And it can improve human-computer interaction efficiency in operations with proper gesture recognition solutions. In actual situations, the operations are complex and changeable, so the gestures used in interaction are also difficult to predict in advance due to the compounding of multiple consecutive gestures. To recognize such gestures based on computer vision (CV) requires complex models trained by a large amount of datasets, it is often unable to obtain enough gesture samples for training a complex model in real tasks, and the cost of labeling the collected gesture samples is quite expensive. Aiming at the problems mentioned above, we propose a few-shot continuous gesture recognition scheme based on RGB video. The scheme uses Mediapipe to detect the key points of each frame in the video stream, decomposes the basic components of gesture features based on certain human palm structure, and then extracts and combines the above basic gesture features by a lightweight autoencoder network. Our scheme can achieve 89.73% recognition accuracy on the 5-way 1-shot gesture recognition task which randomly selected 142 gesture instances of 5 categories from the RWTH German fingerspelling dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.