Abstract

When the projection of a collection of samples onto a subset of basis feature vectors has a Gaussian distribution, those samples have a generalized projective Gaussian distribution (GPGD). GPGDs arise in a variety of medical images as well as some speech recognition problems. We will demonstrate that GPGDs are better represented by continuous Gaussian mixture models (CGMMs) than finite Gaussian mixture models (FGMMs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.