Abstract

Let n be a positive integer. We give an elementary construction for the nth variation, Vn(f), of a real valued continuous function f and prove an analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1] denote the real valued continuous functions on the closed unit interval, let An denote the semi-algebra of non-negative functions in C[0, 1] whose first n differences are non-negative, and let Sn denote the difference algebra An - An. We show that Sn is precisely that subset of C[0, 1] on which Vn(f)<∞. (Theorem 1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.