Abstract

Photocatalytic oxidative coupling of methane (OCM) into value-added industrial chemicals offers an appealing green technique for achieving sustainable development, whereas it encounters double bottlenecks in relatively low methane conversion rate and severe overoxidation. Herein, we engineer a continuous gas flow system to achieve efficient photocatalytic OCM while suppressing overoxidation by synergizing the moderate active oxygen species, surface plasmon-mediated polarization, and multipoint gas intake flow reactor. Particularly, a remarkable CH4 conversion rate of 218.2 μmol h-1 with an excellent selectivity of ∼90% toward C2+ hydrocarbons and a remarkable stability over 240 h is achieved over a designed Au/TiO2 photocatalyst in our continuous gas flow system with a homemade three-dimensional (3D) printed flow reactor. This work provides an informative concept to engineer a high-performance flow system for photocatalytic OCM by synergizing the design of the reactor and photocatalyst to synchronously regulate the mass transfer, activation of reactants, and inhibition of overoxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call