Abstract

AbstractThe synthesis of yttria‐stabilized zirconia nanoparticles with a fine control on the chemical composition and the distribution of yttrium cations is of major interest to master the mechanical, optical or ionic conduction properties of the final material. However, a fine control of this chemical homogeneity within the particles, especially above 5 mol.% of yttria (Y2O3), is challenging with conventional synthesis routes. In the present study, for the first time the interest of using supercritical sol–gel like synthesis is demonstrated for the continuous production in a single step of high quality zirconia (ZrO2) nanocrystals of 7 nm stabilized with Y2O3 without post‐treatment. Three compositions are investigated, i.e., 1.5, 3, and 8 mol.% of Y2O3 and in‐depth physico‐ chemical characterizations such as X‐ray diffraction, total X‐ray scattering, High‐resolution electron microscopy, Raman and X‐ray photoelectron spectroscopy are performed to asses and thus prove the successful synthesis of these different compositions while keeping a good chemical homogeneity. This enables to confirm that this original process leads to a unique and fine structural control for such small yttria‐doped zirconia nanocrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.