Abstract

This review comprehensively covers the translation from batch to continuous flow synthesis of metal nanowires (i.e., silver, copper, gold, and platinum nanowires) and their diverse applications across various sectors. Metal nanowires have attracted significant attention owing to their versatility and feasibility for large-scale synthesis. The efficacy of flow chemistry in nanomaterial synthesis has been extensively demonstrated over the past few decades. Continuous flow synthesis offers scalability, high throughput screening, and robust and reproducible synthesis procedures, making it a promising technology. Silver nanowires, widely used in flexible electronics, transparent conductive films, and sensors, have benefited from advancements in continuous flow synthesis aimed at achieving high aspect ratios and uniform diameters, though challenges in preventing agglomeration during large-scale production remain. Copper nanowires, considered as a cost-effective alternative to silver nanowires for conductive materials, have benefited from continuous flow synthesis methods that minimize oxidation and enhance stability, yet scaling up these processes requires precise control of reducing environments and copper ion concentration. A critical evaluation of various metal nanowire ink formulations is conducted, aiming to identify formulations that exhibit superior properties with lower metal solid content. This study delves into the intricacies of continuous flow synthesis methods for metal nanowires, emphasizing the exploration of engineering considerations essential for the design of continuous flow reactors. Furthermore, challenges associated with large-scale synthesis are addressed, highlighting the process-related issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.